Student ID

University of Bedfordshire

Period of Study	SEM 1 Paper 1
Academic Year	2021/22
Unit Title	Dynamics, Measurements and Control
Unit Code:	CIS108-2

Time Allowed:	2 HOURS
---------------	---------

Unit Co-Ordinator: Dr Mina Mortazavi

Instructions for Candidates

Do not open this paper until instructed to do so by the Senior invigilator

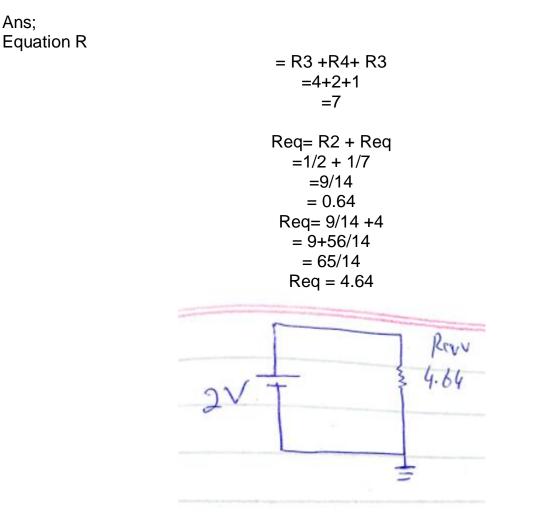
Equipment allowed:	Basic, non-programmable Calculator
Materials allowed:	None
Materials supplied	Formula sheet supplied
Additional Instructions:	Type of Exam: This is a closed book examination

There are TWO sections:


Answer All questions from section A and THREE out of FOUR questions from Section B

Section A: SHORT ANSWER QUESTIONS

- Answer All Questions in SECTION A
- Each question carries 5 marks


Question 1

Find the equivalent resistor (R total) for the network presented in Figure 1A.

[5 Marks]

Question 2

You have been given a task to select a sensor; name four different selection criteria for your sensor selection, briefly explain two of them.

Ans;

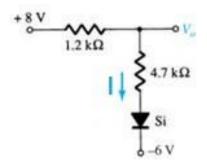
[5 Marks]

- 1. Temperature
- 2. Size
- 3. Protection Glass
- 4. Discrete or analog input

Question 3

Using a simple diagram, briefly explain the speed- torque relation for a DC motor.

Ans;


DC motors are relatively simple machines.

When supply voltage is constant, the Torque T is inversely proportional to speed W.

Question 4

For the circuit presented in Figure 2A, find the current I and V_o , if the diode is a silicon type

($V_D = 0.7 volts$)

Ans;

$$Vd = 0.7V$$

$$I = V1R1 - V2R2$$

$$=8x1.2 - 4.7x0.7$$

$$=9.6 - 3.29$$

$$=6.31$$

$$V = Vin - Vg$$

$$=8 - 6$$

$$V=2V$$

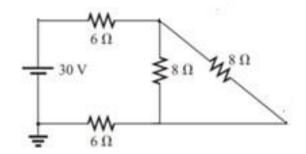
Question 5

Overall transfer function for a control system is given by: $T(s) = \frac{3}{s^2+8s+3}$. Considering the damping factor, which type of the system, this transfer function demonstrates?

[5 Marks]

[5 Marks]

Ans:


T(s)= 3/ s2+8s+3 T(s) =8/2 =4 T(s) =4>1 So overdamped

Section B: LONG ANSWER QUAESTIONS

- Answer any 3 (THREE) questions only.
- Each question carries 25 marks.

Question 1

a) Find the total current and the total power dissipated in circuit of Figure 1B.

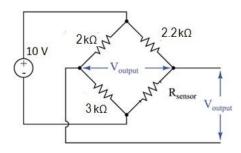
[12 Marks]

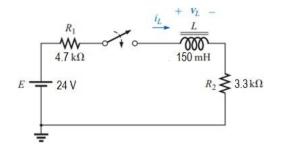
Ans:

$$\begin{array}{rcl}
 [9] & V = 30V \\
 R = & \frac{9 \times 8}{8 \times 8} \\
 = & \frac{647}{16} & \frac{324}{84} = 4 \\
 = & \frac{16}{16} & \frac{16}{16} & \frac{16}{16} & \frac{16}{16} \\
 = & \frac{16}{16} & \frac{1$$

b) Figure 2B presents a bridge circuit to measure the temperature. If Rsensor is 650 Ω , calculate the V_{output} .

UNITCIS108-2 /21-22/ SEM1/ Paper 1




Figure 2B

[5 Marks]

(b)

$$\begin{aligned}
Rx &= 2 \cdot R \\
&= 2 \cdot R \\
&= \frac{2 \cdot R}{5} + 650 \\
&= \frac{2 \cdot R}$$

- c) For the network of Figure 3B,
 - i. write the mathematical expressions for the current *iL* and the voltage *VL* following the closing of the switch.
 - ii. How long does it take for the *iL* to reach its maximum level?

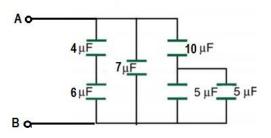
[8 Marks]

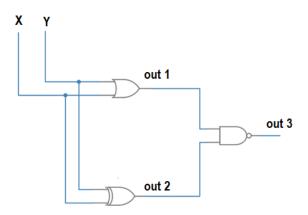
(i)
$$di = L \frac{dv}{dE}$$

(ii) $L = 150 - 3.3$
= 146.9

Question 2

a) Find the equivalent capacitor between terminal **A** and **B** in Figure 4B. If a voltage of 40 V is applied across the terminal **AB**, calculate the energy stored in equivalent capacitor in Joules.



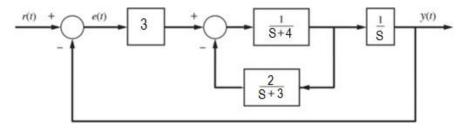

Figure 4B

Page 7 of

p) = 5+5 = 10 = loxlo Istla = 10\$ = 5+7 = 12 + 6114 =12 + 619 6+4 =12 + 24 10 =12+24 C=ruy Q=CV E = 14.4×40 = 576

b)

The combinational logic system presented in Figure 5B, accepts 2-bit binary numbers. Complete the Truth table below for this system.



Х	Y	Out 1	Out 2	Out 3
0	0			

0	1		
1	0		
1	1		

Question 4

a) Find the close loop transfer function for the system presented in Figure 7B.

[10 Marks]

$$= \frac{115 \pm 9}{35 \pm 1}$$

b) Using Routh-Hurwitz method, determine if the control system presented in Figure 7B is stable or not. Why?

[8 Marks]

Routh-Hurwitz method, so its not stable.

c) Using a general diagram, present main components of a pneumatic actuator.

[7 Marks]

T-domain	S- domain	T-domain	S-domain
1	$\frac{1}{s}$	cos ωt	$\frac{s}{s^2 + \omega^2}$
t	$\frac{1}{s^2}$	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
e ^{-at}	$\frac{1}{s+a}$	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
sin ωt	$\frac{\omega}{s^2 + \omega^2}$	$\frac{df(t)}{dt}$	sF(s) - f(0)

Formula Sheet

 $U = \frac{1}{2}CV^2$

 $\varepsilon \varepsilon_0 = 8.854 \times 10^{-12}$ $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$